Scandinavia can provide an illustration of all the above. When Hutchison Ports Stockholm established its new container terminal to the south of the Swedish capital at Norvik it chose a site with a natural deep-water draught. The company installed two of the world’s biggest quay cranes and equipped them with automation and remote operation. ABB supplied the technology. In the container world loading and discharge processes are pretty much identical worldwide regardless of terminal size, but smaller terminals like Norvik generally require more operational flexibility given the many different sizes of vessels they accommodate. The quay cranes here serve vessels ranging from small barges up to ships 22 containers wide.
As container ships have become bigger so have the ship-to-shore (STS) cranes. Economies of scale bring benefits, but a drawback is that the human eye is limited and on cranes this big the physical distance between the cabin and the ship’s hold is too great for the operator to clearly see his target.
Hence the large number of cameras on the cranes. “The biggest difference is the cameras, and the angles of view that they give. They zoom in on the container and we can see big angles all around the ship, and the screens show us everything we need to see around the quay crane. It helps me as a driver to do the work more efficiently as well as more safely,” says Linus Gellborn, a crane operator at Norvik. He does not operate from a cab on the crane, but from a central room, looking at screens; he not only has a better view but has more comfort as well.
The cab on the gantry crane is becoming a thing of the past. For further evidence consider the Eurogate Container Terminal in Wilhelmshaven, Germany. In February this year the port ordered two Liebherr dual trolley shipto- shore container cranes. These will be the first double trolley container cranes at the terminal and can handle the world’s largest container vessels. Wilhelmshaven is, in fact, Germany’s only deep-water port able to allow ultra-large container vessel access at all tides, and it is gearing up for significant growth and modernising into a fully automated terminal. These cranes are therefore significant for the German economy.
Each has a lift height of 54.5m and a forward reach of 73m. The span between legs is 30.48m and they have an operational back reach, with the secondary trolley, of 26m. One thing they do not have is anywhere for a human being to sit: they are not being equipped with an operator’s cab.
Instead, Liebherr’s Remote Operator Stations (ROS) system is installed. Operators work at a distance, in a spacious office complex, via video screens, and much of the handling is automatic.
The cranes are designed for tandem operation. The primary trolley delivers containers automatically to the pinning platform. There the containers rest on frames while the twist locks are removed. This is done by hand – it is the only manual part of the process. Once the pinning personnel leave the platform, they activate the secondary trolley, which automatically delivers the container to the landside automated guided vehicles (AGVs).
Rubber-tyred gantry cranes (RTGs) are also part of the automation process. As an example, in Portugal, PSA Sines, the local subsidiary of PSA International, has ordered six electric-powered automated rubber-tyred gantry (aRTG) cranes from Konecranes. It is the port’s first venture into aRTG systems. They will be fully automated, and will have the capability to stack up to five containers, instead of only three with the current straddle carriers. Truck handling and exceptions will be managed via an ROS. Man-machine interaction will be minimised.
The aim is to improve efficiency, predictability and safety as well as support the terminal’s expansion plans. When its new phase is complete the terminal will almost double its annual handling capacity from 2.3 to 4.1 million twentyfoot equivalent unit (TEU) containers. The cranes will be delivered in Q1 2024.
Eco-friendliness is another major current theme in port and container handling. Central to it is the flight from diesel. Thus port crane specialist Macgregor, part of Cargotec, in December introduced its fully electrically driven heavy-duty transloading crane, the TCE. The crane finally closes the gap in MacGregor’s electric crane portfolio: the company can now offer electric port cranes up to 50t safe working load (SWL).
Transloading cranes like these are usually used for heavy-duty work in areas with draught restrictions or limited infrastructure and typically run 24/7 to provide the most efficient handling of bulk material. By electrifying the drive, and using it in combination with an energy storage system to get the maximum benefit from power that is regenerated during the lowering of loads, the crane is said to consume approximately 60% less energy than a hydraulic equivalent. CO2 emissions will be reduced by more than 5,500t within a typical lifecycle of a crane. Macgregor say that the electric drive also increases the turnover capacity performance by more than 10% because of the higher speeds. With no need to change oil, filters and hoses there are also potential savings in capital expenditure and maintenance costs.
Two such cranes were part of an order placed with Macgregor in December for a total of ten floating crane barges to be built by PT Karya Teknik Utama at its shipyard in Indonesia. The cranes are designed for 1,800,000 load cycles. The two TCE electric transloading cranes will be the first to be produced and delivered to the customer. Delivery is scheduled from the second quarter of 2023 to the third quarter of 2024.
Container terminals are racing to automate
Welcome Digital Dream Technology support (http://bbs.ddcnc.com/) | Powered by Discuz! X3 |